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§ 1. Introduction.
n the discussion of the energy loss by swift charged particles 
passing through matter one may conveniently distinguish 

between two extreme cases. When a penetrating particle has a 
sufficiently high charge, or low velocity, it will carry electrons 
which to some extent will screen the field of the particle. The 
problem of its energy loss is then quite involved, even though it 
may be treated essentially on classical mechanics. But as soon 
as the velocity of the particle is high compared with the orbital 
velocity of an electron carried by it in the ground state, the energy 
loss can be computed rather accurately using a quantum mechan
ical perturbation treatment. In the present paper we shall be 
concerned with the latter simple case, and in particular with the 
slowing down of protons and a-particles. We shall try to build 
up a simple and consistent picture of the atomic processes dis
played in stopping problems for atoms containing many electrons. 
But it may be useful to make first a few remarks regarding the 
different treatments and points of view on the subject.

We consider then the energy loss suffered by a heavy particle 
of velocity v and charge ze, passing through a substance of 
atomic number Z and with a density N atoms per unit volume. 
As long as v remains large compared with the velocity of the 
more strongly bound electrons in the substance, the average 
specific energy loss of the particle is with good approximation 
given by the general formula of Betiie (Bethe (1930), Bethe 
and Livingston (1937)) 

dR mn2
■\Z log
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I (1)

where I is a constant characteristic of the substance, often denoted 
as the average excitation potential. This constant was by Bethe 
found to be determined by
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where fik is the atomic oscillator strength corresponding to the 
transition (/, k) with frequency coik; a similar formula applies 
when chemical bindings come into play. The equation (1) holds 
for non-relativistic velocities. For very fast particles the rela
tivistic term (—log(l —- n2/c2) — a2/c2) is to be added to the 
logarithm in (1). It is well known that half of this term arises 
from close collisions with the electrons in the substance, while 
the other half is due to distant collisions. It should be mentioned 
that the relativistic formula is not always quoted correctly in the 
literature, and also that some authors introduce a potential I 
defined in a manner different from that used here. A correction 
to the above relativistic term, depending on the density of the 
material, was introduced by Fermi (1940). We shall not be con
cerned with relativistic cases where this effect is important.

In connection with (1) it is worth recalling that for an analysis 
of stopping problems it can be of advantage to use a simple 
idealized picture of the energy transfer. The collision may then 
be described by a classical impact parameter, p, and a collision 
time, T — p/v. For a particle of high velocity the collisions can 
be divided into the close and the distant ones. In the violent 
close collisions the binding and mutual interaction of the electrons 
will not be important. In the more distant collisions the average 
energy transfer is equivalent to that in free classical impacts. It 
is now decisive for the magnitude of the total energy loss by the 
particle that the energy transfer becomes negligible for collision 
frequencies, 1/r = u/p, less than the adiabatic frequency co char
acterizing the dynamical properties of the atomic system. The 
value of co is connected with I by the relation / — hco. We shall 
repeatedly make use of the above simple concepts.

The energy loss suffered by electrons passing through matter 
cannot, for several reasons, be contained in formulae of type 
of (1). In the following we shall treat only heavier particles, but 
the estimates of the average excitation potentials, which involve 
only distant collisions for fast penetrating particles, can of course 
be used as well in the description of the stopping of electrons.

In Bethe’s deduction I is determined by the transition fre
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quencies and corresponding oscillator strengths in the atomic 
system. A direct calculation of I on these lines is simple in the 
case of hydrogen, but becomes complicated for substances of 
high atomic number. A considerable simplification of the pro
blem for heavier substances was achieved by Bloch (1933), 
when he applied the Thomas-Fermi model of the atom. Making 
some simplifying approximations in the Thomas-Fermi model 
when extending it to dynamical problems, Bloch found that the 
average excitation potential I = I(Z} in Bethe’s formula (1) 
could be written as

Z = Io-Z, (2)

Io being a constant independent of Z. Bloch did not calculate 
the value of Io; in fact, it seemed difficult to compute this quantity 
from his model with sufficient accuracy, an empirical deter
mination being preferable. A calculation of /0 was carried through 
later by Jensen (1937), but with a picture of the atom too sim
plified to allow quantitative comparisons.

The numerous data on the slowing-down of protons and 
a-particles in substances of medium and high atomic number 
have shown that Bloch’s relation (2) is rather well satisfied for 
sufficiently high velocities v. The values of Io = I/Z found em
pirically are about 10 eV, with only slight variations between the 
different elements.

When the velocity of the particle becomes comparable with 
those of the more strongly bound electrons in the substance— 
as is usually the case for natural ct-rays—the energy loss is no 
longer well represented by the constant potential in equations 
(2) or (1). The potential will then vary with velocity because the 
logarithmic expressions in (1') apply only when the arguments 
are large. Bethe has here introduced corrections of the contri
butions from the electrons in the K-shell (Bethe and Living
ston (1937)). In the following we shall be particularly interested 
in this velocity region, and also in the stopping for still lower 
velocities, where N. Bohr (1948) has accounted in a simple 
manner for the empirical i»3-relation for the range of ct-rays.

It is the aim of this paper to bring out general relationships, 
embracing results like that of Blocii (2). We shall rely on sim
plified descriptions of atoms, where the main features of atomic 
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dynamics are most easily recognized. It may be that more than 
due emphasis is given to the comparison with a free electron 
gas and the description based on polarization. But we found this 
way of approach preferable; although less common it is perhaps 
the simplest one.

In order to get a first insight into the phenomena we shall, in 
§ 2, try to arrive at a simple qualitative picture of the stopping 
in heavier substances, and in § 3 discuss in how far this picture 
can be said to agree with the data. These questions were treated 
briefly in a recent note (Lindhard and Scharff (1952)). A more 
detailed discussion of different kinds of approach employed in 
atomic dynamics is attempted in § 4. We shall endeavour to show 
the significance of the revolution frequencies of the electrons in 
these problems, and their connection with the adiabatic frequency. 
Moreover, the electronic interaction appearing in the polarization 
is found to be of decisive influence for the dynamics of heavier 
atoms. A formula with rather general applicability is derived for 
the energy loss in matter, and more quantitative results are then 
obtained in §5. Among the questions there to be treated are the 
magnitude of the polarization effects and the reduction in energy 
loss for low velocities of the particle. Finally, the straggling 
phenomena are discussed briefly in § 6 on similar lines.

§ 2. Stopping by Heavier Substances in a 
Qualitative Description.

As well known the statistical description of Thomas and Fermi 
gives a surprisingly good account of the atomic structure and 
binding, in particular for electrons in the intermediate region of 
an atom. In the problem of the energy loss of a particle penetrating 
through atomic systems this method will seem especially well 
suited, because the atomic electrons all give comparable con
tributions to the stopping, so that the total effect is due mainly 
to the majority of the electrons with medium binding. Neither 
the individual characteristics of the atoms or molecules, deter
mined by the outer electrons, nor the precise magnitude of the 
binding of the innermost electrons will be of importance in first 
approximation.

In the Thomas-Fermi model the electronic densitv distri-
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butions for different atoms are similar, and the common unit of 
length is proportional to Z—1/3. The charge density eg is therefore 
proportional to Z2, and the total binding energy of the atom 
behaves as Z7/3. Since, thus, the binding per electron is pro
portional to Z4/3 the electrons may be said to have velocities pro
portional to Z2 .

In the present connection we are interested in the dynamics 
rather than the statics of the atom. When the dynamical treat
ment is based on the Thomas-Fermi model the motions can be 
described on classical mechanics, only with due regard to the 
exclusion principle in the initial state of the system. Suppose 
now that a small disturbance is set up in the atom. The develop
ment in time of this disturbance can be governed by only two 
kinds of frequencies. Of these, one is the frequency co0 = 
(4 Jt e2 QIm)1/2, determined by the densities of mass and charge 
and corresponding to the classical resonance frequency of an 
extended gas of charged particles. For heavy atoms the spectrum 
of classical resonance frequencies cd0, behaving as @1/2, is thus 
contained in a single distribution with a scale proportional to Z. 
The second kind of frequencies can be pictured in the following 
manner. The disturbance will be propagated and at the same 
time damped with certain velocities, and since all velocities in 
the static model behave as Z2/3 the velocities of propagation and 
damping must show this dependence on the atomic number. Now, 
the linear dimensions of the system are proportional to Z~1/3, 
and accordingly the frequencies of damping and revolution are 
proportional to Z. Thus, we have found that all frequencies 
entering in the dynamical description show the same dependence 
on the atomic number. This result was first obtained by Blocii 
(1933) on the basis of his simplified hydrodynamical model of 
atomic dynamics.

The general behaviour of the frequencies in the atom may 
also be accounted for by noting that the unit of time in the 
Thomas-Fermi model is proportional to Z—1. It follows that in a 
perturbation treatment, i. e. in the approximation of linear field 
equations, where one can speak of a set of proper frequencies of 
the system, these frequencies must behave as Z.

As to the approximations involved in this picture of atomic 
dynamics, the use of a perturbation treatment was just a charac- 



8 Nr. 15

teristic of the stopping problem for fast particles of low charge. 
Moreover, the description by a classical approximation is ap
propriate here, partly because we are concerned with a calculation 
of the screening in distant collisions, where the classical treat
ment gives the same average result as the quantum mechanical 
calculations, and partly since we have described the atom by 
the semi-classical Thomas-Fermi model.

From the above results we can obtain a qualitative picture 
of the stopping of a heavy particle, with velocity z? and charge ze. 
One may for instance argue as follows. The specific energy loss 
will always be of the same form as equation (1), i.e. equal to 
(4 jtz2e4ZN/mv2) times a dimensionless function, L, independent 
of the charge ze of the particle. This function is in Bethe’s 
formula an average over the atomic system of quantities of the 
characteristic logarithmic type. The logarithms depend on the 
maximum energy transfer 2zz?n2—or the corresponding fre
quency ct>max = 2zz?n2//z— and on the transition frequencies in 
the atomic system. In the semi-classical description of Thomas 
and Fehmi we must thus expect that the only frequencies which 
can enter in the function L are comax and the atomic frequencies 
proportional to Z, even when L is no longer of the logarithmic 
type. The dimensionless function L will therefore depend on Z 
and v only through the ratio of the frequencies, proportional to 
Z/u2, and we can write 

(3)

where the so far unspecified function L(.r)is determined by the 
distribution of the frequencies in the atom. In order to obtain 
a suitable dimensionless parameter in the function L in (3) we 
have introduced = e2/h as a measure for the velocities. The 
equation (3), as it stands, is applicable only for non-relativistic 
velocities, and normally the familiar term (log (1 ~u2lc2) + z>2/c2) 
must be added on the left hand side of (3) if u is comparable 
with c.

It is clear from the above deduction that, if the atomic fre
quencies entering in the description were, for instance, the binding 
frequencies of the electrons, proportional to Z4/3, the function L 
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would instead depend on the ratio Zil3/ir. But, as we have seen, 
the dynamic frequencies in the Thomas-Fermi atom are not of 
this kind. A quite different question is the limitations of the 
Thomas-Fermi description, mentioned in the beginning of this 
paragraph. In the first place, due to the individual variations in 
the binding of the outermost electrons in the atom, one will expect 
small fluctuations from one element to another, but on the average 
the formula should remain valid. We shall return to the problem 
of these fluctuations in § 5. In the second place, the binding of 
the innermost electrons is not well accounted for by the Thomas- 
Fermi model, and the corresponding frequencies do not behave 
as Z. While the most loosely bound electrons primarily give rise 
to fluctuations, the presence of the strongly bound electrons imply 
instead systematic deviations from the dependence of L on the 
single variable v^/vqZ. Still, since the individual contributions and 
the number of these electrons both are small, it is to be expected 
that they will not have an appreciable influence on the variation 
of the total stopping with Z and n.

A few simple results may be derived immediately from 
equation (3). If the velocity v of the particle is large compared 
with the electronic velocities in the atom, the dependence of the 
function L on u must be approximately as log (n2), as in Bethe’s 
formula (1). Equation (3) then leads to Bloch’s formula (2), 
again with an undetermined value of the constant Io. In $5 will 
be given an approximate estimate of this constant. It may here 
be noted that the mentioned replacement of Z/z/2 by Z4/3/zr in L 
would in this case give a formula deduced by Sommerfeld 
(1932), where Z in Bloch’s formula (2) is replaced by Z4/3, at 
variance with the measured stopping.

For low velocities of the particle, or values of v comparable 
with the velocities of the majority of the electrons in the atom, 
the more strongly bound electrons no longer contribute appreciably 
to the stopping, and the function L will not behave as in the Bloch 
formula. In the lower part of this region the specific energy loss 
is approximately proportional to 1 'n, corresponding to Geigér’s 
formula for the range of a-rays. With this dependence on v it 
follows from (3) that the energy loss is proportional to Z1/2, in 
fair agreement with the classical rule according to which the 
stopping behaves as A1/2. We shall presently give a more quanti- 
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tative discussion of the region of low velocities on the basis of 
recent measurements.

The above-mentioned reduction in the contribution of the 
strongly bound electrons has been discussed by Bethe from a 
somewhat different point of view. For velocities comparable with 
the electron velocities in the K-shell Betiie estimates the decrease 
in stopping due to these electrons (Bethe and Livingston (1937), 
Brown (1950), Walske (1952)). This correction sets in at quite 
high velocities of the particle, and changes initially only rather 
slowly with velocity. It will therefore seem that a separate cor
rection for the K-shell is a somewhat doubtful procedure, and 
it is of course not in line with the statistical treatment of the atom. 
Although further corrections for the L-shell and even higher 
states can be made, such an attack becomes highly complicated.

For extremely low velocities, as in the case of canal rays, 
the present description no longer applies. This is partly because 
there is a high probability that the particle will carry an electron 
when its velocity is of the order of that of an electron bound to 
it in the ground state, and partly because the stopping is then 
mainly due to the outermost electrons which do not follow the 
statistical model. The deviations set in for values of x somewhat 
lower than 1, depending on the substance and the charge of the 
penetrating particle. For values of x of the order z2/Z the de
viations are expected to be considerable.

Instead of the above formulation where L in (3) is a function 
only of v2/Z, one might say that the specific energy loss itself is 
a function of v2/Z, because dEfdR differs from L only by a factor 
proportional to Z/z;2. This formulation can be useful, but it is no 
longer valid when relativistic corrections set in. Moreover, if one 
wants to study the empirical justification of a picture of the kind 
suggested here, it is a better criterion to plot L, which function will 
show more clearly the presence of small deviations from the picture.

As to the range of the particle we may similarly write, for 
not too high energies, 

(4)

where R is the range, M the mass of the particle, and a0 the radius 
of the hydrogen atom. The function /‘(.t) is connected with L(rc)by
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(5)

For higher velocities the relativistic corrections of magnitude 
about n2/c2 destroy the validity of (4); these corrections are pri
marily due to the kinetic energy being no longer ^Mv2. One might 
then attempt a more precise formulation in analogy to (3), but 
unfortunately this is not feasible on the same simple lines.

The formula (4) applies strictly for range differences only. The 
above-mentioned deviations from the description of stopping for 
extremely low velocities imply the presence of very small dif
ferences in range, depending on the substance and the particle. 
These differences we shall call differences in excess range, and 
their values will be found in § 3.

§ 3. Comparison with Experiments.
Let us compare the formula (3) with experimental data 

available at present. In Fig. 1 we have plotted L(x) as a function 
of the variable x = (d/d0)2-Z—1, using a number of absolute 
measurements of the stopping of protons of energy between 
1—200 keV and 340 MeV, for metals ranging from uranium to 
the extreme case of beryllium. The values of L(.r) are obtained 
by introducing the measured stopping on the left hand side of (3), 
and afterwards adding the relativistic correction if the velocity 
is high. As mentioned no correction should be made for the 
K-shell. The points on the figure are based on measurements of 
specific energy loss of protons, performed by the following authors : 
Bakker and Segrè (1951), Mather and Segrè (1951), 340 MeV. 
Sachs and Richardson (1951), 18 MeV. Warshaw (1949), 100-300 
keV. Madsen (1953), 0.2-2 MeV. See, further, the note on page 14.

The points in Fig. 1 appear to give a rather well-defined curve. 
The fluctuations around the average are small, as was to be 
expected. In the present connection it is more significant that the 
different groups of elements, arranged according to atomic num
ber, do not show a tendency to separate out into consecutive cur
ves. The points for Be should of course not properly be included 
in this comparison based on the statistical model.
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tistical treatment. The points represent experimental values, for metals, of the
quantity L given by equ. (3). The abscissa is the variable x, in a logarithmic 
scale. The clotted straight line gives the inclination in Bloch’s asymptotic formula, 

and it corresponds to Io = 10 eV.

In order to cover a wide range of .r-valucs we have used 
a logarithmic scale for the abscissa in Fig. 1. This has the 
advantage that points with the same value of Io = I/Z lie on 
a straight line. The common inclination of such lines is given 
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by the dotted line on the figure, which corresponds to Io — 10 eV. 
For high valnes of x, i.e. high velocities, it is seen that Bloch’s 
formula with constant Io has approximate validity. The value of 
Io thus obtained is about 10 eV, determined essentially by the 
measurements of Bakker and Segrè, and of Mather and Segrè. 
For decreasing values of x the curve dips gradually towards

Fig. 2. Comparison between experiments according to the statistical treatment, 
for low values of x = v2¡Zvl. As abscissa is used x1/2. The curve represents formula 

(11), to be discussed in §5.

higher values of I -- Z(p). When x is about 5 a maximum in I 
is reached, and this potential is here almost twice as large as 
for high velocities. Eventually, for x decreasing below 5, the 
value of I decreases again and passes through the original high 
velocity value when x is of the order 0.5. It should be mentioned 
here that for ¿r-values between 1 and 5 the curve shown on the 
figure lies somewhat below the semi-empirical curve for air given 
by Bethe and Livingston (1937).

If one measures the specific energy loss in matter for a particle 
of a certain velocity it is possible to find the limiting ionization 
potential at high velocities by multiplying the measured values 
of I by the proper factor corresponding to the variation of the 
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potential along the curve in Fig. 1. It is difficult to estimate the 
accuracy of such a semi-empirical procedure. A correction of 
this kind has been suggested by Sachs and Richardson (1951), 
whose measurements cover a considerable part of the curve 
in Fig. 1. These authors, however, did not emphasize that for 
lower velocities the correction reaches a maximum, whereupon 
it decreases again.

The behaviour of the curve for low values of x is more 
apparent from Fig. 2, covering the interval 0.2 < x < 20. As 
abscissa is used x1 , because a u3-law for the range in this repre
sentation gives a straight line through the origin. In the first 
approximation the points on the figure may be said to correspond 
to this law, but the resulting curve is curved slightly downwards. 
This is particularly so for higher x-values. It should be noted 
that the figure includes quite high particle energies, e.g. 18 MeV 
protons in Ag, and that the p3-law has been suggested only for 
considerably lower velocities.

The approximate result that the present parameter x even for 
low velocities collects the experimental points on a single curve 
was expected from the qualitative considerations in § 2, but its 
significance will be seen more directly in the discussion in § 5. 
It is here interesting that, if one uses instead of x the previously 
mentioned parameter n2/Z43, the measurements will separate 
out into a succession of curves for the different separate 
elements.

When this paper had been sent to press it came to our notice that 
Kahn in Chicago has investigated the specific energy loss by protons 
in Be, Al, mica, Cu, and Au, in the energy interval 0.5-1.3 MeV. His 
measurements for Be, mica, and Au agree well with Madsen (1953), 
whereas for Al and Cu Kahn finds values about 10 to 20 °/0 higher than 
those of Madsen, the deviations being largest for Cu. The reason for 
the discrepancies is, as yet, not known. Further, measurements of the 
stopping in Cu have been made by Cooper in Ohio, whose results are 
about 5 °/0 lower than those of Kahn. The x-values involved in the 
new measurements are 0.6-2 for Cu and 14 for Al. Since, in the region 
around x = 1 on Figs. 1 and 2, the points for Au and Ag are somewhat 
higher than those for Al and Cu, a possible increase in the latter values 
should not impair the description by a single function depending only 
on x. However, for x < 6 the deviation from the straight Bloch line 
on Fig. 1 would be less, and the curve would lie closer to that for air. 
The maximum deviation from the Bloch line would not be changed 
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essentially, but instead occur at a somewhat higher value of x (x ~ 10). 
The above-mentioned discrepancies may serve to emphasize the uncer
tainties prevailing in present determinations of energy loss, excepting, 
perhaps, energy loss in air and in photographic plates.

The measurements shown in Figs. 1 and 2 refer only to the 
specific energy loss in metals. As regards other substances—and 
in particular gases—the evidence is mostly relative measurements 
of ranges, or differences in range. The range observations even 
have the advantage of being more accurate than direct measure
ments of the specific energy loss. These two cannot immediately 
be compared, but instead a separate discussion of the ranges 
may be made. We shall therefore attempt to plot ranges as a 
function of the single variable x, in the manner prescribed by 
equation (4). As mentioned in § 2, this method of comparing 
ranges can only be applied in the non-relativistic region. There 
is another difference from the treatment of specific energy loss, 
because in the very last part of the range the stopping will no 
longer show the common behaviour assumed above. Even though 
the resulting range deviations are small they must be taken into 
account in an accurate representation of the data.

The procedure used in obtaining a range curve is now the 
following. The measured ranges in mg/cm2 are according to 
equation (4) multiplied by the factor (l/AZ)-(z2Mp/M), where 
-Vp is the mass of the proton, and M that of the particle. This 
will, apart from a constant factor, correspond to finding the 
quantity /’ on the right side of equation (4). As a first approximation 
the results are plotted as a function of the variable x. One finds 
roughly a common curve, but the sets of points for the separate 
elements will not precisely follow the trend of the common curve. 
There will be deviations which are significant only for the 
shortest range values. We then try to subtract a small individual 
amount—call it the excess range—from the ranges in order to 
obtain a curve on which all the measurements are collected. This 
amount will depend both on the substance and on the charge 
of the particle. The excess ranges are then so far determined 
apart from a common additive constant, the fixation of which 
is given below. The resulting points are shown in Fig. 3 in a 
double logarithmic scale, together with the values of the excess 
ranges. We have employed the extensive measurements by
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Fig. 3. Ranges plotted according to the statistical formula (4). The ordinate gives, 
in a logarithmic scale, ranges in mg, cm2 multiplied by (1/AZ)• (z2Jf/,/Ajf). The 
ranges used are experimental ranges minus the excess ranges (see text). The full

line curve was obtained by integration of the averaged curve in Fig. 1.

Mano (1934) of ranges of natural a-rays in He, air, Ne and A. 
Further are used the accurate semi-empirical range curves for 
a-particles and protons in air by Bethe (1950)1. Included on the

1 Recent measurements by Reynolds et al. (cf. Bull. Am. Phys. Soc. 27, 
No. 6 (1952)) with protons of low energies appear to deviate somewhat from the 
curve by Bethe. For higher energies, 2—8 MeV protons, Burcham (1953) has 
obtained results in good agreement with Bethe. 
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figure are moreover the measurements by Rosenblum (1928) of 
range differences for a-rays in the metals Al, Ag and Au. From 
these range differences one does not, of course, obtain the values 
of the excess ranges. On the figure is included He where the 
statistical considerations in § 2 do not apply and the average 
excitation potential is much higher than the value given by the 
Bloch formula. As seen from the figure, this gas cannot either 
be made to follow the common curve for higher values of the 
variable x. For air the charge value Z = 7.22 can be used, since 
the expressions in question vary only with a low power of Z.

The ranges in Fig. 3 can be compared with the specific energy 
loss from Figs. 1 and 2. For this purpose we integrate according 
to equations (4) and (5) the averaged experimental specific energy 
loss given by the full-line curve in Fig. 1. However, the specific 
energy loss is not accurately known for a>values below ^0.2. 
We have here made the plausible choice of continuing the curve 
to the origin by a straight line on Fig. 2. The integration can 
then be performed, and the resulting curve is shown by the full
line curve in Fig. 3. There is good agreement with the range 
measurements.

Using the integrated curve we have fixed the additive constant 
in the excess ranges. This gives the not unreasonable result that 
the excess range for a-rays is highest in He and vanishes in A. 
Moreover, the excess ranges are of the order of magnitude to 
be expected from the previously mentioned effects. For a-rays 
they are higher than for protons, corresponding to the screening 
of the charge appearing for higher values of x.

The description in § 2 has thus been found to apply rather 
well for the average specific energy loss. Similarly, the ranges 
seem to show mutual agreement on this picture, and further to 
be consistent with the specific energy loss in metals. But one 
should not, of course, be deluded as to the accuracy obtained 
from the procedure used here in discussing the ranges and com
paring them with the specific energy losses.

§ 4. Collective and Independent Particle Descriptions.
In the following we shall consider the mechanisms involved 

in the present problems of atomic dynamics, and discuss the 
connection between the independent particle and collective de- 

Dan.Mat. Fys.Medd. 27, no. 15. 2 
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scriptions as they appear in statistical models of atoms. For 
a further justification of the present line of argument, the reader 
is referred to Lindhard (1953).

A detailed description of an atom is afforded by the Hartree 
model, where the wave function of the total system is the product 
of one-particle wave functions. When the system is disturbed by 
an external field these wave functions will of course not develop 
independently in time. Still, since the one-particle wave functions 
are governed by the same one-particle Hamiltonian, they will 
automatically remain orthogonal. This has the advantage that 
the exclusion principle need not be taken into account in the 
dynamical treatment.

Now, in actual treatments of atomic dynamics, one usually 
has recourse to the so-called independent particle model. By the 
independent particle model we shall here understand a descrip
tion of the system as particles moving independently of each 
other in a fixed atomic field. This differs from the Hartree 
description in that the dynamics is governed only by the action 
of the external forces, the internal forces being regarded as 
unchanged. It is apparent that in this simplified description too 
the exclusion principle may be disregarded.

Let us apply the general expression for the average energy 
loss given by Bethe, where the logarithmic term in equation (1) 
has the form

For the present we assume that the velocity of the particle is 
high compared with the electronic velocities in the atom, and 
ask for the corresponding limiting value of the average excitation 
potential /.If we were concerned with only one electron bound 
in a static potential it would be the spacing between neighbouring 
quantum states which determined I, equal to h times the effective 
adiabatic frequency limiting the energy transfer. For high quantum 
numbers these quantities are then simply given by the frequency 
of revolution of the electron.

When the Hartree model or the independent particle model 
is introduced in (!') we may, according to the above, sum over
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all final states k for each electron, without regard to the exclusion 
principle. We can then write, instead of (1),

L = logC°- = fikloSMik’ <6)

i 1 k

where L contains only one simple summation over frequencies 
attributed to completely independent electrons. This formulation 
allows a direct application of correspondence arguments, as for 
one electron, and in the independent particle model the fre
quencies co¿ will for high quantum numbers represent essentially 
the revolution frequencies for the electronic states in question. It 
is clear that, if one took the same electronic states in the independ
ent particle model as in the Hartree model, the formula would 
lead to different results in the two instances, on account of the 
neglect of polarization effects in the former model.

The picture with independently moving electrons is thus 
characterized by certain frequencies of revolution in the classical 
limit, and it is based on an analogy with a single electron in a 
fixed potential. Now, we found in § 2 that the two kinds of 
frequencies one may imagine in the atom—the classical resonance 
frequency determined by the interaction, and the frequencies of 
revolution—behave in the same manner in the statistical descrip
tion. It even appeared that a distinction between the two was 
rather artificial in the present dynamical problem. On account 
of this equivalence of the two kinds of frequencies it seems 
possible to picture the dynamical behaviour of the atom as being 
governed only by the interaction and inertia of the electron cloud, 
instead of by the frequencies of the independent particle model.

In order to appreciate the consequences of the interaction 
picture we shall first consider the effect of interaction in the simple 
case of an extended homogeneous electron gas. It has been shown 
by Kramers (1947) that the specific energy loss by a heavy 
charged particle in a gas of free electrons at rest is given by

dE 4%z2e4 . 2 mu2
,,, =-------T" ’ Ï? ‘ lo& T ~ ’dR mi/ îïa>Q

(7)

where q is the density of electrons, and co0 — (4 .tc2o/zz?)12 the 
classical resonance frequency of the medium.

2*
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Equation (7) shows that the frequency determining the adia
batic limit is just a>0. This result may be obtained directly when 
considering in more detail the competition between the polarization 
in the gas and the direct force from the penetrating particle 
(A. Bohr (1948)). In fact, for a collision with impact parameter/? 
between an electron and the particle, the force on the electron 
will be approximately ze2/p2, and since the collision time is p/i> 
the displacement in space of the electron during the impact must 
be (ze2lmp2)‘(p/v)2 = ze2/mv2. The electronic displacements give 
rise to a polarization force Á tcqzei/nw2, and accordingly the force 
from the particle will be compensated by the polarization for 
an impact parameter p = v/co0, from which follows the formula 
of Kramers.

In this deduction the electrons were supposed to be at rest 
before the collision. But it can be shown easily that, even for a 
degenerate gas, the formula (7) remains valid for a penetrating 
particle of velocity high compared with the velocities of the 
electrons in the gas. Indeed, we may, as mentioned, neglect the 
exclusion principle in the calculation of the perturbed motion of 
the electrons, and it is then seen that the displacements of the 
individual electrons during the collision will be just as above. 
We thus find the same adiabatic limit as before, and, since the 
average energy transfer for a given impact parameter is to the 
first order independent of the electron velocities, we arrive again 
at formula (7).

In calculations of the effects of polarization, where one is 
concerned primarily with large impact parameters, the behaviour 
of the electrons can be described on classical mechanics when 
their quantum numbers are sufficiently high. Already from this 
circumstance it could be foreseen that for a free electron gas the 
adiabatic limit is determined by the classical resonance frequency, 
which is the only frequency defined in a classical description of 
the system.

For lower velocities of the particle the energy loss differs from 
that given by the equation (7). In the limit for very slow par
ticles, Fermi and Teller (1947) have shown that the energy 
loss in a degenerate gas is approximately proportional to u. We 
shall here use a similar estimate by Lindhard (1953), where the 
logarithmic term per electron, L, is found to be approximately
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1 Í2nw2\3/2 
20\ ÏÏco0 )

instead of the value L = log (2 nw2/hcoo) in (7). The two formulae 
are to be joined for an argument somewhat larger than ten.

In this discussion of polarization effects we have used the 
conventional picture of a free electron gas. It may be that this 
picture does not represent closely an actual extended system of 
electrons. Still, it does seem to give a sufficient indication of the 
behaviour to be expected in atomic systems, when combined 
properly with the corresponding ideas regarding the orbital 
motions and revolution frequencies of the electrons.

We have seen that for the present purpose the extended electron 
gas may be described essentially as a compressible classical 
liquid of a given density of mass and charge. It is clear that, if 
the density of the system—and consequently also the classical 
resonance frequency co0—varies only slowly in space, we can 
compute the total stopping of the particle by averaging (7) over 
space. But if we try to extend this liquid picture to the case of 
an atom we meet with the apparent difficulty that here the density 
varies quite rapidly in space. Still, let us tentatively apply the 
procedure of averaging (7) over the atom. This leads to the 
following expression for the logarithmic term in the stopping 
formula

L = y ( d3r • Q (r) log (8)
J n C0q

where coq = 4 %e2o (r)/m varies in space proportionally to the 
electron density @(r). It is now seen from the structure of for
mula (8) that it may be expected approximately to account for 
the stopping by heavier atoms. Indeed, in formula (7) a sum
mation is supposed already to have been made over the distri
bution in momentum space. When we now average over ordinary 
space this will correspond to an integration over phase space. 
More precisely, we can consider (8) as an outcome of the Bethe 
formula (1') with generalized oscillator strengths, when the 
statistical model is applied in a literal manner and only the 
electronic interaction is included in the dynamics.

In order to illustrate the connection between the two pictures 
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used above we shall compare them for the case of an extremely 
simple statistical model of atoms. Let the orbital velocity and 
radius of the n’th electron in an atom be given by

(9)

where the effective quantum number v is supposed to be the same 
for all the electrons, and equal to a constant, y, times Z1'3. In 
this description the atoms have the same similarity as in the 
Thomas-Fermi model, and if y is slightly less than 1, formula (9) 
even gives approximately the same density distribution as the 
Thomas-Fermi model for the major part of the atom. For the 
n’th electron we now find that the revolution frequency wn = 
vn/an — (vo/ao) ■ (n2lv3) is exactly equal to the classical resonance 
frequency co0 for the density given by (9) at the distance an from 
the nucleus. The frequencies o¡ and co0 (r) entering in (6) and 
(8), respectively, are thus the same and the two formulae give 
equal results.

Thus far, we have treated separately the revolution frequencies 
of the independent particle model and the classical resonance 
frequencies. As mentioned, it will seem difficult to distinguish 
between the two, and it is possible to describe the dynamics of 
the atom using only one of the two concepts. Nevertheless, for 
any particular model of the atom the magnitude of the separate 
contributions of the two frequencies is prescribed. When trying 
to find the total effect on the stopping we note that the force 
constants involved will be proportional to the squares of the 
frequencies. The total effective frequency squared is then the 
sum of the two squares. Since the two kinds of contributions 
behave in the same manner we can write

L = ~{ d3r ■ Q (r) log 2”W , (8')
Z J

where / is a constant. The value of / we estimate from the sim
plified model (9) where con and m0 are equal in magnitude. On 
the basis of this result we assume in the following, for simplicity, 
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the value / = 21/2 for heavier substances. For the very lightest 
substances, where the polarization in the atom is of minor impor
tance, the quantity / will be expected to approach the value 1.

The formula (S'), as it stands, should give an account 
of non-relativistic polarization phenomena in dense substances, 
and from the deduction of (7) it is clear that the formula will 
give a fair representation also of the stopping contribution from 
free electrons. An interesting question is here the effect of damping 
by resistance, due to random collisions of the freely moving 
electrons with the lattice. If the collision frequency were com
parable with the resonance frequency an essential change would 
result in the stopping formula. However, in all known cases the 
collision frequencies are small, and the effects of resistance can 
be neglected. This circumstance was not recognized by Halpern 
and Hall (1948) in their treatment of polarization effects in 
carbon. The damping introduced by these authors leads to an 
anomalously high effective value of / in graphite (~ 190 eV). 
Their result is at variance with recent measurements (Bakker 
and Segrè (1951), I = 76 eV).

§ 5. Theoretical Estimates of Stopping Power.

On the basis of equation (8') we can compute the excitation 
potential per electron, /0, in Bloch’s formula (2). The results 
for various atomic models are listed in Table 1. For the 
constant / we have chosen the value 21'“ introduced above. One 
finds approximate agreement with the empirical value of the 
Bloch constant, about 10 eV. The result of the Lenz-Jensen 
description appears to be a fairly good average of the Hartree 
model. The value for the Thomas-Fermi model is a little lower; 
it is characteristic that, while the average binding in the Thomas- 
Fermi model is closely equal to that in the Lenz-Jensen descrip-

Table 1. Values of the Bloch constant Io — I/Z (in eV), 
calculated from (8') with / — 211'2.

Thomas-Fermi Lenz-Jensen
Hartree

A atomic Hg

8.9 10.7 11.0 9.6
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tion, averages of the kind (S') are better represented by the 
latter model. Regarding the value of Io for mercury we note that 
in the metallic state it will be slightly higher than for free atoms.

The agreement in Table 1 with the empirical values may be 
regarded as fortuitous, but it gives a useful guidance in the 
further treatment. The above results apply in the case of par
ticles of velocity so high that the potential I remains velocity
independent. We shall now consider some of the aspects of the 
rather involved case presented for lower velocities, and in par
ticular treat the simpler question of stopping for the lowest 
velocities covered by the statistical model, or 0.1 < x < 5. As 
before, it can be useful to apply the less familiar picture of polari
zation when estimating the energy loss.

Formulae such as (6) show that I is no longer independent 
of velocity when the arguments 2 mv2lha>i in the logarithmic 
terms are not large compared with unity. The resulting gradual 
change in I with velocity may just as well be calculated from the 
electron gas description corresponding to (7). In this picture the 
energy loss will be much reduced if comax — 2mu2/h is of the 
order co0, as seen from (7'). The reduction in the contribution 
to the energy loss from the individual electrons, or from the 
different regions in the atom, does not set in at all abruptly, but 
the summation over electrons with widely different revolution 
frequencies makes it natural to proceed at first as if the change 
were abrupt. We then assume that the low frequencies in the 
atom contribute in the usual manner to the energy loss, while 
the high frequencies give no contribution, the division between 
high and low frequencies being given by comax/C, where C is a 
constant. The effect of this cut-off procedure can be seen most 
directly from the simplified atomic model (9). Indeed, the more 
refined statistical models of the atom lead in this case essentially 
to the same result. Using (9) we now sum in (8') over the 
frequencies less than comax/C and find 

(10)

where the effective quantum number v is written as y-Z1'3. The 
specific energy loss thus becomes proportional to Z1,2/u, cor
responding to the simple law for a-rays mentioned earlier. This 
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derivation is similar to that used by N. Bohr (1948), equ. (3.5.7), 
but the resulting formula is somewhat different.

As to the value of the constant of proportionality in (10), we 
see that it varies only slowly with the cut-off C. The parameter y 
is now so adjusted as to give for high velocities the correct value 
of 70 — 10 eV; this requires y = 0.71. We can then compare 
with the approximate value of L determined from the experi
ments at low velocities, which lead to L = 1.35 -x’1/2 (see Fig. 2). 
The value required for C from this is C = 5.6. Such a high 
value for the cut-off in the energy loss is in line with the discussion 
by Bethe for hydrogen, or K-shells in general, where the reduction 
is considerable when v is of the order of the electron velocity, 
i.e. for a value of the argument in the logarithm much larger 
than unity.

A similar result is obtained when formula (7') is applied. In 
the atomic model (9) the integration is performed over the elec
trons for which respectively (7) and (7') are applicable. This 
gives

L = 1.36-.r1/2 — 0.016-x3'2, (11)

and it so happens that formula (11) for lower values of x is in 
close agreement with the experiments shown in Fig. 2. The full
line curve on the figure represents (11). If one allows for an 
uncertainty by a factor 2 in (7') a latitude will result of about 
10 °/0 in the formula (11). The formula joins smoothly to the 
one which applies for high velocities at a value of x equal to 19.

The variation of (11) with x is qualitatively of the kind found 
on Fig. 1. For increasing x the effective potential defined by 
(11) = log(2nw2//) increases from low values to a maximum 
of about 16-17 eV, occurring at x ~ 5, and then decreases to 
10 eV. The gradual cut-off (7') is in this respect superior to the 
abrupt one leading to (10), because it is effective for considerably 
higher values of x. But even though the initial part of the curve 
(11) is not wrong the maximum in I is too narrow, and for x 
between about 6 and 30 the curve should lie somewhat lower.

One might suppose that the shortcomings of formula (11) for 
higher values of x are due to the defects of the simplified atomic 
model (9), where the firmest electron bindings are not properly 
accounted for. One could then attempt to use, e.g., the Lenz- 
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Jensen model. This leads to a slight improvement for higher 
velocities, but only part of the experimental deviation from the 
Bloch formula can be accounted for. For low velocities the 
Lenz-Jensen description gives even worse agreement with the 
experiments, which indicates that the good agreement of (11) is 
somewhat accidental.

We shall not attempt further improvements of the present 
treatment, which would appear to demand not merely a more 
detailed picture of the electronic states, but rather a description 
of the adiabatic effects and the polarization considerably more 
elaborate than in the present discussion.

Let us return to the question of the calculation of the average 
excitation potential I in the limit of high velocity of the particle. 
In the first part of this paragraph we found values of I from 
various atomic models. As soon as a more detailed atomic de
scription as the Hartree model is used there will appear minor 
individual deviations from the relation of Bloch (2). This is 
indicated in Table 1, for argon and atomic mercury. Similar 
differences occur when the bindings in molecules or solids are 
taken into account. One can attempt to evaluate such differences 
on the basis of equation (8'). However, estimates of this kind 
are not expected to be very accurate, since they involve the most 
loosely bound electrons in atoms.

In order to see how much the formula (8') can be in error 
for the most loosely bound electrons we use it in the case 
of the lightest elements, where it should be least applicable. We 
introduce the actual density distributions in the light atoms and 
find then from (8') a corresponding potential I. For these sub
stances it will be natural to put / = 1, because in the dynamics 
each electron moves in a nearly static atomic field, the separate 
effects of polarization being small. The results are shown in 
Table 2, where for molecular hydrogen we have simply put 
Z — 1.2. For helium we have used hydrogen wave functions, 
with Z— 1.69. The valence electrons in metallic lithium are 
assumed to be distributed with constant density in space. These 
rough descriptions of the lightest elements will be accurate enough 
for our purpose.

The approximate correctness of the results in 'fable 2 and 
Table 1 seems to indicate that one can estimate the changes zl I
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Table 2. Comparison between the measured 
I (in eV), and the value given by (8') with / 
= 1. The measurements are by Mano ( 1934), 

and Bakker and Segrè (1951).

Formula
(8')

Bethe’s 
formula Exp.

- H22 2 16 17.62’ 15—16

He 37 43 35
solid Li 36 45n 34—37

11 Estimate by A. Bohr (1948).
2) Platzman (1952) quotes the value 19 eV.

in I due to chemical bindings, or due to deviations from the 
statistical model for different atoms, by introducing the density 
changes in formula (8'). The calculated values of A I can hardly 
be more in error than corresponding to the latitude in the values 
of /. The changes Al, thus obtained, can never become very 
large, so that only minor deviations from the Bragg rule will 
occur for a particle of high velocity. We note that this conclusion 
disagrees with some of the measurements concerning liquid water 
and water vapour, where considerable deviations from the Bragg 
rule have been reported (cf. Platzman (1952)).

§ 6. Straggling in Energy Loss and Range.

The straggling in energy loss, or straggling in range, can be 
calculated in a direct manner when the cross sections for the 
individual possible energy transfers are known (N. Bohr (1948)). 
We shall for the present consider only the case where the particle 
has penetrated a layer of thickness sufficient to ensure that the 
distribution in energy loss is approximately Gaussian. The average 
square fluctuation in energy loss then determines the distribution 
completely, and it is given by the familiar formula

£2 = <(¿E —<JE»2> = (12)
i

where is the cross section for energy loss 7). The con
tributions to the straggling are thus weighted towards the close 
collisions, and the effect becomes independent of the screening
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in the distant collisions if the velocity v is large. For a fast particle 
the cross section for energy transfer T in close collisions is

(13)

where relativistic effects are included, and ß — v/c. We assume 
that the particle is so heavy that the maximum energy transfer 
to an electron is Tmax = 2 nw2/(l — ß2). The straggling in energy 
loss is accordingly’

i-C
Í22 = 4%j2e4X-d/?-Z1 (14)

I — ß

which leads to an average square fluctuation in range given by 

where ß — ß (E').
For lower velocities the problem is more involved and, as for 

the average energy loss, one will expect that the more strongly 
bound electrons give reduced contributions. The discussion here 
is in line with that in the preceding paragraphs, but of a more 
qualitative kind. Of course, the same holds for the measurements 
where the straggling cannot be determined as accurately as the 
range or specific energy loss.

While the absolute value of the straggling per unit path is a 
constant for high, but non-relativistic, velocities it will for lower 
velocities decrease towards zero. Since this is true for each 
separate frequency in the atom, one may introduce a cut-off 
for a suitable value of 2 mu2/h a>0, and in this way estimate the 
straggling in collisions with atoms. The important question is then 
the place at which the reduction sets in. This can be estimated 
by taking, for instance, the result for the case of a free gas. It is 
here convenient to quote the value of the straggling relative to 
the energy loss, which quantity is a measure for the magnitudes 
of the energy transfers in the collisions. For a free Fermi gas of 
high density one finds roughly, in the limit of low velocities 
(Lindhard (1953)),
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ß2
dE V (5 m/7<z>0)1/2,

straggling is according to (16) of

(17)

of the particle. When integrating over the

(17')

atoms sufficiently heavy for the statistical 
relative

m

corresponding to an effective cut-off' at about 2 nw2/fr co0 = 3. 
In collisions with

model to apply, the
the form

where Jf is the mass
atom, using the formulae (14) and (16) in the atomic model (9), 
it is found that for low values of x the function u tends to a 
constant value, given approximately by

ß2
EdE

This result for the relative straggling coincides with that found 
by N. Bohr (1948). For higher velocities the straggling approaches 
smoothly the value given by (14), and one may write

(17")

where the formula holds when relativistic corrections can be 
neglected.

The straggling in range for lower velocities can be found 
directly from (17'). We obtain here

(18)

For higher values of x one can derive from (15) the approximate 
formula (cf. N. Bohr (1948), equ. (5.2.7))

(44Í2 _ _2 /n^_2y2'
Ä2 _L(x)M\ 5 c2 (19)

where terms in u/c are included up to second order. The simple 
formula (19) is not much in error for proton energies even as 
high as those used in the measurements of Mather and Segrè 
(1951). It should be mentioned that these authors employed an 
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essentially non-relativistic formula for the straggling in range, 
different from (15) and (19).

The measurements of straggling in energy loss are mainly 
in the region of high values of x. As regards a comparison with 
experiments for cases where also smaller values of x enter, and 
equation (17') should apply, the reader is referred to a recent 
publication by C. B. Madsen (1953).

We are much indebted to Professor N. Bohr and M. Sc. 
A. Boiir for numerous enlightening discussions and comments 
on the subject of the present paper. Dr. C. B. Madsen has kindly 
placed at our disposal the results of his experiments before 
publication, which has been of great value in this investigation. 
Further, we wish to thank Mr. Knud H. Hansen for help with 
numerical calculations.
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